TUTORIAL NOTES FOR MATH4010

JUNHAO ZHANG

1. INEQUALITIES

Let us discuss some important inequalities.
Our starting point is the definition of convexity .

Definition 1 (Convex function). A function f: I — R is said to be convex if
(11) FIA + (1= Ayl < Af(2) + (1= N f(y),
for every z,y € I and X € [0, 1].
Theorem 2. A function f: I — Ris said to be concave if
(1.2) e + (1= Ayl > M)+ (1= N (),
for every x,y € I and X € [0, 1].
The first fundamental inequality is the so called Jensen’s inequality.

Theorem 3 (Jensen’s inequality). For n € N, Let f : I — R be convex ( or
concave), then

(13)  f (i /\kﬂfk> < i)\kf(iﬂk% <07“ f (i Ak%) > i)\kf(wk%)
k=1 =1 =1 =1

n

forallzy, -+ jxp €T and 0 < X\ <1,k =1,--- ,n such that > A\ = 1.
k=1

Proof. If f: I — R is convex. We prove Jensen’s inequality by induction.
For n = 1, the inequality holds trivially.

Suppose that the inequality holds for some m > 1 and for arbitrary z1, -, Z;my1 €
m+1

LL,O< M <Lk=1--,m 0 < Apy1 < land > A = 1. Let us denote
k=1

m
A =>" Ak, then by the induction hypothesis,
k=1
m+1 m )\
f (z A) _f (Az M1 A)xmﬂ>
k=1 k=1
m )\k
D Swk |+ =N f(@mi)
k=1

A ka (zr) + (1 = A) f(Zm+1)

[
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The result follows by induction.
If f: I — Ris concave, then ¢ = —f is concave, therefore by the above result,

we have
m4+1 m—+1
9 <Z Ak%) <> Aeglzn),
k=1 k=1
therefore
m—+1 m—+1
f (Z )\kl'k> > ) Nef ().
k=1 k=1
O

With the Jensen’s inequality, another useful inequality can be derived by con-
sidering the concave function f(z) = Inz.

Theorem 4 (Young’s inequality). Let p,q € R be two conjugate exponents, i.e.
1,1
<+ 2 =1, then
p g
2P q
(1.4) 2yl < 2”1yl ,
p q
for all z,y € C.

Proof. Tt suffices to prove for the case that both z and y are non-zero. Since
f(z) = Inz is concave, therefore by Jensen’s inequality, for two conjugate exponents
p and g,

x[P a 1 1
" (| S > > ~In(|z[?) + = In(|y|?) = In |z| + In|y],

p q p q
which implies the Young’s inequality ([l

The famous Hélder’s inequality can be proved by using Young’s inequality.

Theorem 5 (Holder’s inequality). Let n € Nand p,q € R be two conjugate expo-

nents, i.e. % + % =1, then

(1.5) Z|$kyk| < <Z|xk|p> <Z|yk|q> )
k=1 k=1 k=1
for all xy,y, € C,k=1,--- ,n.

Proof. 1t suffices to prove for the case where at least one of the x; and one of the
Yy, are non-zero. Let us denote

Lk Yk

)

(g |xj|p> p (; ym) q

then by Young’s inequality, for two conjugate exponents p and g,

b

|z kK| |z |

1 q
1 <1 n |y
q p

1
' PSSk TSyl
n n x:|P y-q
(Z |xj|p> (Z |yj|q> j=1 ! j=1 /
j=1 j=1
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summing both sides over kK =1,--- ,n,

n
Z |$kyk|
k=1

<i|@w>p<i|ww>q
j=1 =1

which implies the Holder’s inequality. O

S]-a

Next we introduce another famous inequality.

Theorem 6 (Minkowski’s inequality). Let n € N and p > 1, then

(1.6) <E |z +ykp> < (E kal”> + (E ykl”) ;
k=1 k=1 k=1
for all zp,yp, € Ck=1,--- ,n.

Proof. Tt suffices to prove for the case where at least one of the x; and one of the

Yy are non-zero. Let us denote
n P
) V= Z |yk|p )
k=1

n
U= (me)
k=1
P
u X v
okl ka> .

=
—

then by the triangle inequality,

P < P P
ot nl? < (ol ) = (oot (A 2l

Since f(x) = zP is convex for p > 1, by Jensen’s inequality,

u |k 4+ lye\” o u |zl v |ykl?
ut+v u u+v v Tu+v up ut+uv vP’
therefore P el?
u Tl v Yk
zp +yr|? < (u+0v)? + ,
ok + ul” < ( ) (u—i—v uP U+ v vp>
summing both sides over Kk =1,--- ,n,
1 1P
n n P n P
S ol < (z |> . (z ym) ,
k=1 k=1 k=1
which implies the Minkowski’s inequality. (I

To study the various properties of functional spaces, it is necessary to extend the
above fundamental inequalities to the infinite series case. More precisely, we have
the following results.

Theorem 7 (Holder’s inequality). Let p,q € R be two conjugate exponents, i.e.
o0 o0

% 4 % = 1. If the series kzl |xk|P and k;l lyk|? are convergent, then the series

NgE

|zkyk| is convergent, moreover,
k

(1.7) D lzkyl < (Z |$k|p> p (Z |yk|q> q ;

k=1 k=1 k=1

1
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forall zp,yp € Ck=1,--- ,n.

Proof. For arbitrary n € N, by Holder’s inequality,

Z\xkyd < <Z|$k|p> (Z |yk|q> < (Z |$k|p> (Z yk|q> ;
k=1 k=1 k=1 k=1 k=1

then by letting n goes to infinity, (1.7) is valid. Therefore by the monotone conver-

o0
gence theorem, > |zryx| is convergent. O
k=1

o0
Theorem 8 (Minkowski’s inequality). Let p > 1. If the series Y. |xx|? and
=1

o0 [ee]
> lyklP are convergent, then the series > |xx + yilP is convergent, moreover,
k=1 k=1
then

(') % oo % o0 %
(1.8) <Z|xk +yk”> < (lek|p> + (ZMV’) :
k=1 k=1 k=1
for all zp,yp € C,k=1,--- ,n.

Proof. For arbitrary n € N, by Minkowski’s inequality,

1 1 1 1
(z|xk+yk|p) s(wa) +<z|yk|p) g(zw) +(z|ykp) |
k=1 k=1 k=1 k=1 k=1

then by letting n goes to infinity, (1.8) is valid. Therefore by the monotone conver-

3 =

(o]
gence theorem, > |z + yi|P is convergent. O
k=1

In the following, we give some examples as applications of the above inequalities.

Example 9. For 1 < p < oo, then ¢, i.e.

by o= {(z(i)) : 2(i) € R, D |a (i) < oo}

=1

=

o)
endowed with the norm ||z, := (Z x(z)|p> for x € ¢, is a Banach space.
i=1

Proof. Firstly, we prove ¢, is a normed space. It is obvious to see || - ||, satisfies the
following two properties,

(1) ||z||, > 0 for all € ¢, where the equality holds if and only if z = 0.

(2) |laz|lp = |af - ||z||p for all z € £, and o € R.
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Moreover, by the Minkowski’s inequality, for z, y and z € £,

e —yllp = (Z (i) = y(l’)l”)
i=1

(Z (i) = 2(d) + 2(i) = y(@')l’”)

< (Z (i) - z<z‘>|p> + (Z 20) - y(z'>|p>

<z = zllp + 11z = yllp-

=

therefore || - ||,, is norm on £,,.

Then we prove ¢, is complete under the norm | - ||,. Let {x,}n>1 € ¢, be a
Cauchy sequence, therefore for arbitrary € > 0, there exists N € N such that for all
m,n > N,

1
p
2 = zmlp = (Z |25 (8) — 2 (i )|p> <g,

hence for arbitrary ¢ € N,
|Z0 (i) — zm (i) <e,

which implies {z,(¢)}n>1 is a Cauchy sequence in R, therefore since R is complete,
there exists (i) € R such that {z,,(¢)},,>1 converges to (i), i.e. for arbitrary i € N
and € > 0, there exists M; € N such that for all m > M;,

[t (8) — 2(8)] < —

P

Then we define x : ¢ — z(i) and show that = € ¢, is the limit of {z,},>1 in /.
Since by Minkowski’s inequality and choosing n > max{My,--- , My},

Z Q)P <Z|xn |p+Z|$n @) < ||znll? + &P,

=1

therefore by letting k goes to infinity,

o0
D () <o,
i=1

which implies « € £,. Moreover, for arbitrary £ € N and € > 0, we choose n > N
and m > max{N, My, -+, My},

k

k
Z|xn(i)_m(i)‘p§2|xn( — Tm(i |p+2|xm —z(d)”

i=1
<Z|xn — ()P + P

<25”,
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therefore by letting k£ goes to infinity
S lani) - 2(@)P < 227,
i=1

which implies {x,, },>1 converges to x in ¢P. ]

Example 10.
loo = {(2(2)) : 2(3) € R, Sl;.p |z(7)] < oo}

endowed with the norm ||z||« := sup|z(i)| for z € ¢, is a Banach space.
i

Proof. Firstly, we prove £, is a normed space. It is obvious to see || - ||« satisfies
the following two properties,

(1) [|z|loo > 0 for all 2 € £, where the equality holds if and only if « = 0.

(2) [lazlloo = |a - |||oo for all z € £o, and a € R.

Moreover, by the triangle inequality, for x, y and z € /.,

[ = ylloo =sup |z(i) — y(4)]
<sup [z(i) — 2(i)] + sup |2(7) — y(i)]
<[z = 2lloe + 2 = Ylloo-

Therefore || - || is & norm on .

Then we prove ¢, is complete under the norm || - ||o. Let {z,}n>1 € le be a
Cauchy sequence, therefore for arbitrary € > 0, there exists N € N such that for all
m,n > N,

[Zn — Zmlloo = sup |zn (1) — zm (9)] <e,
7
hence for every i € N,
|zm (1) — 2 (d)] <,
which implies that {z,(¢)}»>1 is a Cauchy sequence in R, therefore since R is

complete, there exists x(¢) € R such that {z,(i)},>1 converges to z(i), i.e. for
arbitrary i € N and € > 0, there exists M; € N such that for all m > M,,

|z (1) — z(1)] < e.

Then we define x : ¢ — z(7) and show that = € ¢ is the limit of {z,},>1 in l.
Since by Minkowski’s inequality and choosing n > N,

sup [z (i)] <sup [ (i)] + sup [en (i) — (i) < [|2n ] + &,

which implies € ¢,,. Moreover, for arbitrary i € N and ¢ > 0, we choose n > N
and m > max{N, M},

|20 (1) — ()] < |20 (i) — 2 ()] + |2m (i) — 2(i)] < 2,
which implies {x,, },>1 converges to x in f. O

Example 11.
co = {(2(1)) : 2(i) € R, lim |2(7)] = 0}

endowed with the norm || - || is a Banach space.
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Proof. Since ¢y is a subset of /., it suffices to prove that c( is closed in {,.
Let {z,}n>1 C co converges to x € {o,, then for € > 0, there exists N € N such
that for all n > Ny,
€
[7n — 2|00 < 2
hence for all ¢ € N,
. . €
fon (i) — ()] < 5,
because {z,(i)};>1 converges to 0 as i — oo, then there exists No € N such that
for all ¢ > N,

) €
o) < 5.
thus
()] < [on(D)] + |20 (i) — 2(i)| <e,
which implies « € ¢g. Therefore ¢ is closed in £. O
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