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1. inequalities

Let us discuss some important inequalities.
Our starting point is the de�nition of convexity .

De�nition 1 (Convex function). A function f : I → R is said to be convex if

(1.1) f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y),

for every x, y ∈ I and λ ∈ [0, 1].

Theorem 2. A function f : I → Ris said to be concave if

(1.2) f [λx+ (1− λ)y] ≥ λf(x) + (1− λ)f(y),

for every x, y ∈ I and λ ∈ [0, 1].

The �rst fundamental inequality is the so called Jensen's inequality.

Theorem 3 (Jensen's inequality). For n ∈ N, Let f : I → R be convex ( or
concave), then

(1.3) f

(
n∑

k=1

λkxk

)
≤

n∑
k=1

λkf(xk),

(
or f

(
n∑

k=1

λkxk

)
≥

n∑
k=1

λkf(xk),

)

for all x1, · · · , xn ∈ I and 0 ≤ λk ≤ 1, k = 1, · · · , n such that
n∑

k=1

λk = 1.

Proof. If f : I → R is convex. We prove Jensen's inequality by induction.
For n = 1, the inequality holds trivially.
Suppose that the inequality holds for somem ≥ 1 and for arbitrary x1, · · · , xm+1 ∈

I, 0 ≤ λk ≤ 1, k = 1, · · · ,m, 0 < λm+1 < 1 and
m+1∑
k=1

λk = 1. Let us denote

λ =
m∑

k=1

λk, then by the induction hypothesis,

f

(
m+1∑
k=1

λkxk

)
=f

(
λ

m∑
k=1

λk

λ
xk + (1− λ)xm+1

)

≤λf

(
m∑

k=1

λk

λ
xk

)
+ (1− λ)f(xm+1)

≤λ

m∑
k=1

λk

λ
f (xk) + (1− λ)f(xm+1)

≤
m+1∑
k=1

λkf(xk).

1
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The result follows by induction.
If f : I → R is concave, then g = −f is concave, therefore by the above result,

we have

g

(
m+1∑
k=1

λkxk

)
≤

m+1∑
k=1

λkg(xk),

therefore

f

(
m+1∑
k=1

λkxk

)
≥

m+1∑
k=1

λkf(xk).

□

With the Jensen's inequality, another useful inequality can be derived by con-
sidering the concave function f(x) = lnx.

Theorem 4 (Young's inequality). Let p, q ∈ R be two conjugate exponents, i.e.
1
p + 1

q = 1, then

(1.4) |xy| ≤ |x|p

p
+

|y|q

q
,

for all x, y ∈ C.

Proof. It su�ces to prove for the case that both x and y are non-zero. Since
f(x) = lnx is concave, therefore by Jensen's inequality, for two conjugate exponents
p and q,

ln

(
|x|p

p
+

|y|q

q

)
≥ 1

p
ln(|x|p) + 1

q
ln(|y|q) = ln |x|+ ln |y|,

which implies the Young's inequality □

The famous Hölder's inequality can be proved by using Young's inequality.

Theorem 5 (Hölder's inequality). Let n ∈ Nand p, q ∈ R be two conjugate expo-
nents, i.e. 1

p + 1
q = 1, then

(1.5)

n∑
k=1

|xkyk| ≤

(
n∑

k=1

|xk|p
) 1

p
(

n∑
k=1

|yk|q
) 1

q

,

for all xk, yk ∈ C, k = 1, · · · , n.

Proof. It su�ces to prove for the case where at least one of the xk and one of the
yk are non-zero. Let us denote

u =
xk(

n∑
j=1

|xj |p
) 1

p

, v =
yk(

n∑
j=1

|yj |q
) 1

q

,

then by Young's inequality, for two conjugate exponents p and q,

|xkyk|(
n∑

j=1

|xj |p
) 1

p
(

n∑
j=1

|yj |q
) 1

q

≤ 1

p

|xk|p
n∑

j=1

|xj |p
+

1

q

|yk|q
n∑

j=1

|yj |q
,
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summing both sides over k = 1, · · · , n,
n∑

k=1

|xkyk|(
n∑

j=1

|xj |p
) 1

p
(

n∑
j=1

|yj |q
) 1

q

≤ 1,

which implies the Hölder's inequality. □

Next we introduce another famous inequality.

Theorem 6 (Minkowski's inequality). Let n ∈ N and p ≥ 1, then

(1.6)

(
n∑

k=1

|xk + yk|p
) 1

p

≤

(
n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

,

for all xk, yk ∈ C, k = 1, · · · , n.
Proof. It su�ces to prove for the case where at least one of the xk and one of the
yk are non-zero. Let us denote

u =

(
n∑

k=1

|xk|p
) 1

p

, v =

(
n∑

k=1

|yk|p
) 1

p

,

then by the triangle inequality,

|xk + yk|p ≤ (|xk|+ |yk|)p = (u+ v)p
(

u

u+ v

|xk|
u

+
v

u+ v

|yk|
v

)p

.

Since f(x) = xp is convex for p ≥ 1, by Jensen's inequality,(
u

u+ v

|xk|
u

+
v

u+ v

|yk|
v

)p

≤ u

u+ v

|xk|p

up
+

v

u+ v

|yk|p

vp
,

therefore

|xk + yk|p ≤ (u+ v)p
(

u

u+ v

|xk|p

up
+

v

u+ v

|yk|p

vp

)
,

summing both sides over k = 1, · · · , n,
n∑

k=1

|xk + yk|p ≤

( n∑
k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

p

,

which implies the Minkowski's inequality. □

To study the various properties of functional spaces, it is necessary to extend the
above fundamental inequalities to the in�nite series case. More precisely, we have
the following results.

Theorem 7 (Hölder's inequality). Let p, q ∈ R be two conjugate exponents, i.e.

1
p + 1

q = 1. If the series
∞∑
k=1

|xk|p and
∞∑
k=1

|yk|q are convergent, then the series

∞∑
k=1

|xkyk| is convergent, moreover,

(1.7)

∞∑
k=1

|xkyk| ≤

( ∞∑
k=1

|xk|p
) 1

p
( ∞∑

k=1

|yk|q
) 1

q

,
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for all xk, yk ∈ C, k = 1, · · · , n.

Proof. For arbitrary n ∈ N, by Hölder's inequality,

n∑
k=1

|xkyk| ≤

(
n∑

k=1

|xk|p
) 1

p
(

n∑
k=1

|yk|q
) 1

q

≤

( ∞∑
k=1

|xk|p
) 1

p
( ∞∑

k=1

|yk|q
) 1

q

,

then by letting n goes to in�nity, (1.7) is valid. Therefore by the monotone conver-

gence theorem,
∞∑
k=1

|xkyk| is convergent. □

Theorem 8 (Minkowski's inequality). Let p ≥ 1. If the series
∞∑
k=1

|xk|p and

∞∑
k=1

|yk|p are convergent, then the series
∞∑
k=1

|xk + yk|p is convergent, moreover,

then

(1.8)

( ∞∑
k=1

|xk + yk|p
) 1

p

≤

( ∞∑
k=1

|xk|p
) 1

p

+

( ∞∑
k=1

|yk|p
) 1

p

,

for all xk, yk ∈ C, k = 1, · · · , n.

Proof. For arbitrary n ∈ N, by Minkowski's inequality,

(
n∑

k=1

|xk + yk|p
) 1

p

≤

(
n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

≤

( ∞∑
k=1

|xk|p
) 1

p

+

( ∞∑
k=1

|yk|p
) 1

p

,

then by letting n goes to in�nity, (1.8) is valid. Therefore by the monotone conver-

gence theorem,
∞∑
k=1

|xk + yk|p is convergent. □

In the following, we give some examples as applications of the above inequalities.

Example 9. For 1 ≤ p < ∞, then ℓp, i.e.

ℓp := {(x(i)) : x(i) ∈ R,
∞∑
i=1

|x(i)|p < ∞}.

endowed with the norm ∥x∥p :=

( ∞∑
i=1

|x(i)|p
) 1

p

for x ∈ ℓp is a Banach space.

Proof. Firstly, we prove ℓp is a normed space. It is obvious to see ∥ · ∥p satis�es the
following two properties,

(1) ∥x∥p ≥ 0 for all x ∈ ℓp where the equality holds if and only if x = 0.
(2) ∥αx∥p = |α| · ∥x∥p for all x ∈ ℓp and α ∈ R.
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Moreover, by the Minkowski's inequality, for x, y and z ∈ ℓp,

∥x− y∥p =

( ∞∑
i=1

|x(i)− y(i)|p
) 1

p

≤

( ∞∑
i=1

|x(i)− z(i) + z(i)− y(i)|p
) 1

p

≤

( ∞∑
i=1

|x(i)− z(i)|p
) 1

p

+

( ∞∑
i=1

|z(i)− y(i)|p
) 1

p

≤∥x− z∥p + ∥z − y∥p.

therefore ∥ · ∥p is norm on ℓp.
Then we prove ℓp is complete under the norm ∥ · ∥p. Let {xn}n≥1 ∈ ℓp be a

Cauchy sequence, therefore for arbitrary ε > 0, there exists N ∈ N such that for all
m,n > N ,

∥xn − xm∥p =

( ∞∑
i=1

|xn(i)− xm(i)|p
) 1

p

< ε,

hence for arbitrary i ∈ N,
|xn(i)− xm(i)| < ε,

which implies {xn(i)}n≥1 is a Cauchy sequence in R, therefore since R is complete,
there exists x(i) ∈ R such that {xn(i)}n≥1 converges to x(i), i.e. for arbitrary i ∈ N
and ε > 0, there exists Mi ∈ N such that for all m > Mi,

|xm(i)− x(i)| < ε

2
i
p

.

Then we de�ne x : i → x(i) and show that x ∈ ℓp is the limit of {xn}n≥1 in ℓp.
Since by Minkowski's inequality and choosing n > max{M1, · · · ,Mk},

k∑
i=1

|x(i)|p ≤
k∑

i=1

|xn(i)|p +
k∑

i=1

|xn(i)− x(i)|p < ∥xn∥p + εp,

therefore by letting k goes to in�nity,

∞∑
i=1

|x(i)|p < ∞,

which implies x ∈ ℓp. Moreover, for arbitrary k ∈ N and ε > 0, we choose n > N
and m > max{N,M1, · · · ,Mk},

k∑
i=1

|xn(i)− x(i)|p ≤
k∑

i=1

|xn(i)− xm(i)|p +
k∑

i=1

|xm(i)− x(i)|p

≤
∞∑
i=1

|xn(i)− xm(i)|p + εp

<2εp,
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therefore by letting k goes to in�nity

∞∑
i=1

|xn(i)− x(i)|p < 2εp,

which implies {xn}n≥1 converges to x in ℓp. □

Example 10.

ℓ∞ := {(x(i)) : x(i) ∈ R, sup
i

|x(i)| < ∞}

endowed with the norm ∥x∥∞ := sup
i
|x(i)| for x ∈ ℓ∞ is a Banach space.

Proof. Firstly, we prove ℓ∞ is a normed space. It is obvious to see ∥ · ∥∞ satis�es
the following two properties,

(1) ∥x∥∞ ≥ 0 for all x ∈ ℓ∞ where the equality holds if and only if x = 0.
(2) ∥αx∥∞ = |α| · ∥x∥∞ for all x ∈ ℓ∞ and α ∈ R.
Moreover, by the triangle inequality, for x, y and z ∈ ℓ∞,

∥x− y∥∞ =sup
i

|x(i)− y(i)|

≤ sup
i

|x(i)− z(i)|+ sup
i

|z(i)− y(i)|

≤∥x− z∥∞ + ∥z − y∥∞.

Therefore ∥ · ∥∞ is a norm on ℓ∞.
Then we prove ℓ∞ is complete under the norm ∥ · ∥∞. Let {xn}n≥1 ∈ ℓ∞ be a

Cauchy sequence, therefore for arbitrary ε > 0, there exists N ∈ N such that for all
m,n > N ,

∥xn − xm∥∞ = sup
i

|xn(i)− xm(i)| < ε,

hence for every i ∈ N,
|xm(i)− xn(i)| < ε,

which implies that {xn(i)}n≥1 is a Cauchy sequence in R, therefore since R is
complete, there exists x(i) ∈ R such that {xn(i)}n≥1 converges to x(i), i.e. for
arbitrary i ∈ N and ε > 0, there exists Mi ∈ N such that for all m > Mi,

|xm(i)− x(i)| < ε.

Then we de�ne x : i → x(i) and show that x ∈ ℓ∞ is the limit of {xn}n≥1 in ℓ∞.
Since by Minkowski's inequality and choosing n > N ,

sup
i

|x(i)| ≤ sup
i

|xn(i)|+ sup
i

|xn(i)− x(i)| < ∥xn∥∞ + ε,

which implies x ∈ ℓp. Moreover, for arbitrary i ∈ N and ε > 0, we choose n > N
and m > max{N,Mi},

|xn(i)− x(i)| ≤ |xn(i)− xm(i)|+ |xm(i)− x(i)| < 2ε,

which implies {xn}n≥1 converges to x in ℓ∞. □

Example 11.

c0 := {(x(i)) : x(i) ∈ R, lim
i→∞

|x(i)| = 0}

endowed with the norm ∥ · ∥∞ is a Banach space.
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Proof. Since c0 is a subset of ℓ∞, it su�ces to prove that c0 is closed in ℓ∞.
Let {xn}n≥1 ⊂ c0 converges to x ∈ ℓ∞, then for ε > 0, there exists N ∈ N such

that for all n > N1,

∥xn − x∥∞ <
ε

2
,

hence for all i ∈ N,
|xn(i)− x(i)| < ε

2
,

because {xn(i)}i≥1 converges to 0 as i → ∞, then there exists N2 ∈ N such that
for all i > N2,

|xn(i)| <
ε

2
,

thus
|x(i)| ≤ |xn(i)|+ |xn(i)− x(i)| < ε,

which implies x ∈ c0. Therefore c0 is closed in ℓ∞. □
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